More accurate Jensen-type inequalities for signed measures characterized via Green function and applications
نویسندگان
چکیده
In this paper we derive several improved forms of the Jensen inequality, giving the necessary and sufficient conditions for them to hold in the case of the real Stieltjes measure not necessarily positive. The obtained relations are characterized via the Green function. As an application, our main results are employed for constructing some classes of exponentially convex functions and some Cauchy-type means.
منابع مشابه
New Jensen and Ostrowski Type Inequalities for General Lebesgue Integral with Applications
Some new inequalities related to Jensen and Ostrowski inequalities for general Lebesgue integral are obtained. Applications for $f$-divergence measure are provided as well.
متن کاملSome new Ostrowski type fractional integral inequalities for generalized $(r;g,s,m,varphi)$-preinvex functions via Caputo $k$-fractional derivatives
In the present paper, the notion of generalized $(r;g,s,m,varphi)$-preinvex function is applied to establish some new generalizations of Ostrowski type integral inequalities via Caputo $k$-fractional derivatives. At the end, some applications to special means are given.
متن کاملOstrowski and Jensen Type Inequalities for Higher Derivatives with Applications
We consider inequalities which incorporate both Jensen and Ostrowski type inequalities for functions with absolutely continuous n-th derivative. We provide applications of these inequalities for divergence measures. In particular, we obtain inequalities involving higher order χ-divergence.
متن کاملOn a more accurate multiple Hilbert-type inequality
By using Euler-Maclaurin's summation formula and the way of real analysis, a more accurate multipleHilbert-type inequality and the equivalent form are given. We also prove that the same constantfactor in the equivalent inequalities is the best possible.
متن کاملJensen-Ostrowski type inequalities and applications for f-divergence measures
In this paper, we provide inequalities of Jensen-Ostrowski type, by investigating the magnitude of the quantity ∫ Ω (f ◦ g) dμ− f(ζ)− ∫ Ω (g − ζ)f ′ ◦ g dμ+ 1 2 λ ∫ Ω (g − ζ) dμ, for various assumptions on the absolutely continuous function f : [a, b] → C, ζ ∈ [a, b], λ ∈ C and a μ-measurable function g on Ω. Special cases are considered to provide some inequalities of Jensen type, as well as O...
متن کامل